Análise de aprendizagem e personalização de aprendizagem: uma revisão

Nubia Andrea Gonzalez, Andres Chiappe Laverde

Resumo


A Educação no século XXI está cada vez mais mediada pelas tecnologias digitais em um contexto em que enormes quantidades de informação são geradas diariamente. Nesse sentido, considerando a iminente aplicação de tendências emergentes, como a “Internet das Coisas” (IoT), o estudo de seus efeitos educacionais torna-se uma questão de grande relevância tanto para pesquisadores quanto para profissionais da Educação. Nesse contexto, o “Learning Analytics” adquire uma importância especial como uma perspectiva para abordar o tema supracitado, especialmente a partir de um tema muito relevante: a personalização da aprendizagem. Por isso, uma revisão sistemática da literatura sobre learning analytics publicada nas últimas décadas se torna importante para identificar o seu potencial como fator para fortalecer a personalização da aprendizagem. Os resultados mostram um conjunto de fatores chave que incluem aspectos relacionados à avaliação, utilização de quadros, redes sociais de aprendizagem e tutoria inteligente, e a importância do acompanhamento, feedback e apoio.


Palavras-chave


Competências do Século XXI; Problemas Pedagógicos; Literacia Informacional; Aplicações da Ciência de Dados na Educação; Metodologias de Avaliação

Referências


ADMIRAAL, W.; HUISMAN, B.; PILLI, O. Assessment in massive open online courses. Electronic Journal of e-Learning , [s. l.], v. 13, n. 4, p. 207-216, 2015.

ALBELBISI, N.; YUSOP, F. D.; SALLEH, U. K. M. Mapping the Factors Influencing Success of Massive Open Online Courses (MOOC) in higher education. Eurasia Journal of Mathematics, Science and Technology Education , Eastbourne, v. 14, n. 7, p. 2995-3012, 22 May 2018. https://doi.org/10.29333/ejmste/91486

ALDOWAH, H.; AL-SAMARRAIE, H.; FAUZY, W. M. Educational data mining and learning analytics for 21st century higher education: a review and synthesis. Telematics and Informatics, [s. l.], v. 37, p. 13-49, Apr. 2019. https://doi.org/10.1016/j.tele.2019.01.007

AMENT, V.; EDWARDS, R. Better teaching and more learning in mobile learning courses: Towards a model of personable learning. In: 14TH INTERNATIONAL CONFERENCE ON MOBILE LEARNING, 14., 2018, Lisbon. Proceedings[...] Lisboa: IADIS, 2018. p. 214-218. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85052241220&partnerID=40&md5=6ca1258e009575fc0f41ba59f5ac8718 . Access in: 2020 July 10.

ARNOLD, K. E.; PISTILLI, M. D. Course signals at Purdue: using learning analytics to increase student success. In: INTERNATIONAL CONFERENCE ON LEARNING ANALYTICS AND KNOWLEDGE, 2., Vancouver, 2012. Proceedings[...] Vancouver: ACM Press, 2012. p. 267-270. Available from: http://dl.acm.org/citation.cfm?doid=2330601.2330666 Access in: 2019 Jun 18.

BOSCARDIN, C. et al. Twelve tips to promote successful development of a learner performance dashboard within a medical education program. Medical Teacher, London, v. 40, n. 8, p. 855-861, ago. 2018. https://doi.org/10.1080/0142159X.2017.1396306

BUITRAGO, M.; CHIAPPE, A. Representation of knowledge in digital educational environments: a systematic review of literature. A ustralasian Journal of Educational Technology, Tugun, v. 35, n. 4, p. 46-62, 2019. https://doi.org/10.14742/ajet.4041

BURROWS, J.; KUMAR, V. The objective ear: assessing the progress of a music task. In: CHANG, M. et al. (Eds.). Challenges and solutions in smart learning. Singapore: Springer, 2018. p. 107-112.

CHAI, M.; LIN, Y.; LI, Y. Machine learning and modern education. In: INTERNATIONAL CONFERENCE, eLEOT 2018, Shangai, 2018. Proceedings[…]. e-learning, e-education, and online training, Shanghai: Springer International. p. 41-46.

CHATTI, M. A.; MUSLIM, A. The PERLA framework: blending personalization and learning analytics. International Review of Research in Open and Distance Learning, Athabasca, v. 20, n. 1, p. 243-261, 2019. https://doi.org/10.19173/irrodl.v20i1.3936

CLOW, D. An overview of learning analytics. Teaching in Higher Education, [s. l.], v. 18, n. 6, p. 683-695, Aug. 2013. https://doi.org/10.1080/13562517.2013.827653

CONDE, M. A. et al. Teamwork assessment in the educational web of data: a learning analytics approach towards ISO 10018. Telematics and Informatics, [s. l.], v. 35, n. 3, p. 551-563, June 2018. https://doi.org/10.1016/j.tele.2017.02.001

DOKO, E.; BEXHETI, L. A. A systematic mapping study of educational technologies based on educational data mining and learning analytics. In: 2018 7th MEDITERRANEAN CONFERENCE ON EMBEDDED COMPUTING (MECO), 7 th, 2018, Budva, Montenegro. Proceedings[...]. Budva: IEEE, 2018. Available from: https://ieeexplore.ieee.org/document/8406052/ Access in: 2019 Apr 10.

DOLECK, T.; LEMAY, D. J.; BRINTON, C. G. Evaluating the efficiency of social learning networks: Perspectives for harnessing learning analytics to improve discussions. Computers & Education, [s. l.], v. 164, p. 104-124, Apr. 2021. https://doi.org/10.1016/j.compedu.2021.104124

ELLAWAY, R. H. et al . Developing the role of big data and analytics in health professional education. Medical Teacher , Edingurgh, v. 36, n. 3, p. 216-222, Mar. 2014. https://doi.org/10.3109/0142159X.2014.874553

ENGENESS, I.; MØRCH, A. Developing writing skills in english using content-specific computer-generated feedback with essaycritic. Nordic Journal of Digital Literacy, [s. l.], v. 10, n. 2, p. 118-135, June 2016. https://doi.org/10.18261/issn.1891-943x-2016-02-0

FASIHUDDIN, H.; SKINNER, G.; ATHAUDA, R. A framework to personalise open learning environments by adapting to learning styles In: INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED EDUCATION, 7., Lisbon, 2015. Proceedings[…]. Lisbon: SCITEPRESS - Science and and Technology Publications, 2015. Available from: http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0005443502960305 Access in: 2019 June 19.

FELDER, R. M.; SILVERMAN, L. K. Learning and teaching styles in engineering education. Engineering Education, [s. l.], v. 78, n. 7, p. 674-681, 1988.

FERNANDEZ-NIETO, G. M., ECHEVERRIA, V, SHUM, S. R. Storytelling with learner data: guiding student reflection on multimodal team data. IEEE Transactions on Learning Technologies, v. 14, n. 5, p. 695-708, Oct. 2021. https://doi.org/10.1109/TLT.2021.3131842 Era et al.

FERRÃO, M. E.; PRATA, P.; ALVES, M. T. G. Multiple imputation in big identifiable data for educational research: an example from the Brazilian education assessment system. Ensaio: Avaliação e Políticas Públicas em Educação , Rio de Janeiro, v. 28, n. 108, p. 599-621, July./Sep. 2020. https://doi.org/10.1590/S0104-40362020002802346

GEE, J. P. What video games have to teach us about learning and literacy Basingstrokee: Palgrave Macmillan and Houndmills, 2003.

GOYAL, T. et al. Big data handling over cloud for internet of things. International Journal of Information Technology and Web Engineering, [s. l.], v. 13, n. 2, p. 37-47, Apr. 2018. https://doi.org/10.4018/IJITWE.2018040104

HALADYNA, T. M.; DOWNING, S. M. Construct-irrelevant variance in high-stakes testing. Educational Measurement: Issues and Practice, [s. l.], v. 23, n. 1, p. 17-27, 2004. https://doi.org/10.1111/j.1745-3992.2004.tb00149.x

HART, C. Doing a literature review: releasing the research imagination. London: Sage, 2018.

HERSH, M. A.; LEPORINI, B. Accessibility and usability of educational games for disabled students. In: GONZALEZ, C. (Ed.). Student usability in educational software and games: improving experiences: improving experiences. Hershey: IGI Global, 2012. p. 1-40.

HIGGINS, J. P. T.; GREEN, S. Cochrane handbook for systematic reviews of interventions version 5.1.0. The Cochrane Collaboration, 2011. Available from: https://es.cochrane.org/sites/es.cochrane.org/files/public/uploads/manual_cochrane_510_web.pdf Access in: 2020 Aug 24.

HOLMES, M. et al. Near real-time comprehension classification with artificial neural networks: decoding e-learner non-verbal behavior. IEEE Transactions on Learning Technologies, [s. l.], v. 11, n. 1, p. 5-12, Jan. 2018.

HOWARD, E.; MEEHAN, M.; PARNELL, A. Contrasting prediction methods for early warning systems at undergraduate level. The Internet and Higher Education, New York, v. 37, p. 66-75, Apr. 2018. https://doi.org/10.1016/j.iheduc.2018.02.001

HWANG, G.-J. Definition, framework and research issues of smart learning environments: a context-aware ubiquitous learning perspective. Smart Learning Environments , v. 1, n. 1, 4, Dec. 2014. https://doi.org/10.1186/s40561-014-0004-5

IFENTHALER, D.; SCHUMACHER, C. Student perceptions of privacy principles for learning analytics. Educational Technology Research and Development , v. 64, n. 5, p. 923-938, Oct. 2016.

JENA, R. K. Predicting students’ learning style using learning analytics: a case study of business management students from India. Behaviour & Information Technology, v. 37, n. 10-11, p. 978-992, 2 nov. 2018. https://doi.org/10.1007/s11423-016-9477-y

KATO, T.; KAMBAYASHI, Y.; KODAMA, Y. Using a programming exercise support system as a smart educational technology. In: USKOV, V. L. et al. (Eds.). Smart universities. Cham: Springer International, 2018. p. 295-324.

KHOSRAVI, H. et al . Intelligent learning analytics dashboards: automated drill-down recommendations to support teacher data exploration. Journal of Learning Analytics , [s. l.], v. 8, n. 3, p. 133-154, Nov. 2021. https://doi.org/10.18608/jla.2021.7279

KONSTANTINIDIS, S. T. Internet of things in education. In : KONSTANTINIDIS, S.; BAMIDIS P. D.; ZORY, N. (Eds.). Digital innovations in healthcare education and training. Amsterdam: Elsevier, 2021. p. 61-86.

KURILOVAS, E. Advanced machine learning approaches to personalise learning: learning analytics and decision making. Behaviour & Information Technology, [s. l.], v. 38, n. 4, p. 410-421, Apr. 2019. 10.1080/0144929X.2018.1539517

LAJOIE, S.; AZEVEDO, R. Teaching and learning in technology-rich environments. In: ALEXANDER, P. A.; WINNE, P. H. (Eds.). Handbook of educational psychology. 2. ed. New York: Routledge, 2012. p. 803-823.

LIU, D. Y.-T. et al. Data-driven personalization of student learning support in higher education. In: PEÑA-AYALA, A. (Ed.). Learning analytics: fundaments, applications, and trends. Cham: Springer International, 2017. p. 143-169.

MARTINEZ-MALDONADO, R. et al . Physical learning analytics: a multimodal perspective. In: INTERNATIONAL CONFERENCE, 8 th , Sydney: ACM Press, 2018. Proceedings[...]. Available from: http://dl.acm.org/citation.cfm?doid=3170358.3170379 . Access in: 2019 June 6.

MOTHUKURI, U. K. et al . Improvisation of learning experience using learning analytics in eLearning. In: 2017 5TH NATIONAL CONFERENCE ON E-LEARNING & E-LEARNING TECHNOLOGIES (ELELTECH), 5., Hyderabad, India: IEEE, 2017. Proceedings[…] . Available from: http://ieeexplore.ieee.org/document/8074995/ . Access in: 2019 June 7.

MUSLIM, A. et al . The goal-Question-Indicator approach for personalized learning analytics. In: INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED EDUCATION, 9., CSEDU 2017. Porto. Proceedings[…] . Available from https://www.scopus.com/inward/record.uri?eid=2-s2.0-85023740180&partnerID=40&md5=c502f0b0510b6daacd769b919c086da0 . Access in: 2020 Aug 12.

s2.0-85023740180&partnerID=40&md5=c502f0b0510b6daacd769b919c086da0

NGUYEN, Q. et al. Examining the designs of computer-based assessment and its impact on student engagement, satisfaction, and pass rates. Computers in Human Behavior, [s. l.], v. 76, p. 703-714, Nov. 2017. https://doi.org/10.1016/j.chb.2017.03.028

PAPPAS, I. O.; GIANNAKOS, M. N.; SAMPSON, D. G. Fuzzy set analysis as a means to understand users of 21st-century learning systems: the case of mobile learning and reflections on learning analytics research. Computers in Human Behavior, [s. l.], v. 92, p. 646-659, Mar. 2019. https://doi.org/10.1016/j.chb.2017.10.010

RIENTIES, B.; CROSS, S.; ZDRAHAL, Z. Implementing a learning analytics intervention and e valuation framework: What works? In : Big data and learning analytics in higher education. [S. l.]: Springer, 2017. p. 147-166.

ROMERO, L. et al. Supporting self-regulated learning and personalization using ePortfolios: a semantic approach based on learning paths. International Journal of Educational Technology in Higher Education, Cham, v. 16, n. 1, p. 16, Dec. 2019. https://doi.org/10.1186/s41239-019-0146-1

ROWE, E. et al. Assessing implicit science learning in digital games. Computers in Human Behavior, New York, v. 76, p. 617-630, Nov 2017. https://doi.org/10.1016/j.chb.2017.03.043

SAIF, S. M. et al . Impact of ICT in Modernizing the global education industry to yield better academic outreach. Sustainability , [s. l.], v. 14, n. 11, 6884, June. 2022. https://doi.org/10.3390/su14116884

SAQR, M.; PEETERS, W.; VIBERG, O. The relational, co-temporal, contemporaneous, and longitudinal dynamics of self-regulation for academic writing. Research and Practice in Technology Enhanced Learning, Singapore, v. 16, n. 1, p. 29, Dec. 2021. https://doi.org/10.1186/s41039-021-00175-7

SHEMSHACK, A.; KINSHUK; SPECTOR, J. M. A comprehensive analysis of personalized learning components. Journal of Computers in Education , [s. l.], v. 8, n. 4, p. 485-503, Dec. 2021. https://doi.org/10.1007/s40692-021-00188-7

SHUTE, V. J. et al. Assessing key competencies within game environments. In: IFENTHALER, D.; PIRNAY-DUMMER, P.; SEEL, N. M. (Eds.). Computer-based diagnostics and systematic analysis of knowledge. Boston: Springer, 2010. p. 281-309.

SIJING, L.; LAN, W. artificial intelligence education ethical problems and solutions In: INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE & EDUCATION (ICCSE), 13.,. Colombo: IEEE, 2018. Available from: https://ieeexplore.ieee.org/document/8468773/ Access in: 2019 Apr. 10.

SINGH, A. B.; MØRCH, A. I. An analysis of participants' experiences from the first international MOOC offered at the University of Oslo. Nordic Journal of Digital Literacy,[s. l.], v. 13, n. 1, p. 40-64, 12 mar. 2018. https://doi.org/10.18261/issn.1891-943x-2018-01-04

SLADE, S.; PRINSLOO, P. Learning analytics: ethical issues and dilemmas. American Behavioral Scientist, Thousand Oaks, v. 57, n. 10, p. 1510-1529, Oct. 2013.

SOLER COSTA, R. et al. Personalized and adaptive learning: educational practice and technological impact. Texto Livre: Linguagem e Tecnologia, Belo Horizonte, v. 14, n. 3, p. e33445, Sep. 2021. https://doi.org/10.35699/1983-3652.2021.33445

SUNAR, A. S. et al . Personalisation in MOOCs: a critical literature review. In: ZVACEK, S. et al . (Eds.). Computer supported education . Cham: Springer International, 2016. p. 152-168.

TEMPELAAR, D. et al. Student profiling in a dispositional learning analytics application using formative assessment. Computers in Human Behavior, v. 78, p. 408-420, jan. 2018.

TERRAS, M. M. et al. The opportunities and challenges of serious games for people with an intellectual disability. British Journal of Educational Technology, London, v. 49, n. 4, p. 690-700, jul. 2018. https://doi.org/10.1111/bjet.12638

THOMAS, D.; BROWN, J. S. A new culture of learning: cultivating the imagination for a world of constant change. American Journal of Play, [s. l.], v. 219, n. 2, p. 121-123, 2011.

THOMPSON, G.; COOK, I. The logic of data-sense: thinking through learning personalisation. Discourse, London, v. 38, n. 5, p. 740-754, Sep. 2017.

VEKARIYA, V.; KULKARNI, G. R. Notice of violation of IEEE publication principles: hybrid recommender systems: survey and experiments. In: 2012 SECOND INTERNATIONAL CONFERENCE ON DIGITAL INFORMATION AND COMMUNICATION TECHNOLOGY AND IT’S APPLICATIONS (DICTAP), 2., 2012. Proceedings[…] Bangkok: IEEE, 2012. Available from: https://ieeexplore.ieee.org/document/6215409>. Access in: 2019 June 19.

VERBERT, K. et al. Learning analytics dashboard applications. American Behavioral Scientist, [s. l.], v. 57, n. 10, p. 1500-1509, Oct. 2013. https://doi.org/10.1177/0002764213479363

VIVES-VARELA, T. et al. La autorregulación en el aprendizaje, la luz de un faro en el mar. Investigación en Educación Médica, México, v. 3, n. 9, p. 34-39, 2014.

WAHEED, H. et al . Early prediction of learners at risk in self-paced education: a neural network approach. Expert Systems with Applications , v. 213, part A, p. 118868, Mar. 2023. https://doi.org/10.1016/j.eswa.2022.118868

WILLIAMS, J. J.; KIM, J.; KEEGAN, B. Supporting instructors in collaborating with researchers using MOOClets. In: ACM CONFERENCE, 2., 2015. Proceedings[…] Vancouver: ACM Press, 2015. Available from: http://dl.acm.org/citation.cfm?doid=2724660.2728705 Access in 2019 June 7.

WILLIAMS, P. Assessing collaborative learning: big data, analytics and university futures. Assessment & Evaluation in Higher Education, [s. l.], v. 42, n. 6, p. 978-989, Aug. 2017. https://doi.org/10.1080/02602938.2016.1216084

WORSLEY, M.; MARTINEZ-MALDONADO, R.; D’ANGELO, C. A new era in multimodal learning analytics: twelve core commitments to ground and grow MMLA. Journal of Learning Analytics, [s. l.], v. 8, n. 3, p. 10-27, Nov. 2021. https://doi.org/10.18608/jla.2021.7361

XING, W.; DU, D. Dropout prediction in MOOCs: using deep learning for personalized intervention. Journal of Educational Computing Research, [s. l.], v. 57, n. 3, p. 547-570, June 2019. https://doi.org/10.1177/0735633118757015

XU, W.; WU, Y.; OUYANG, F. Multimodal learning analytics of collaborative patterns during pair programming in higher education. International Journal of Educational Technology in Higher Education , [s. l.], v. 20, n. 1, p. 8, Feb. 2023. https://doi.org/10.1186/s41239-022-00377-z

YI, B. et al. Research on personalized learning model under informatization environment. In: INTERNATIONAL SYMPOSIUM ON EDUCATIONAL TECHNOLOGY (ISET), 2017, Hong Kong. Proceedings[…] Hong Kong: IEEE, June 2017. Available from: http://ieeexplore.ieee.org/document/8005386/ Access 2019 Apr. 10.

ZHANG, J.-H. et al. What learning analytics tells us: group behavior analysis and individual learning diagnosis based on long-term and large-scale data. Educational Technology and Society, [s. l.], v. 21, n. 2, p. 245-258, 2018.




DOI: http://dx.doi.org/10.1590/S0104-40362024003204234

Apontamentos

  • Não há apontamentos.




Direitos autorais 2024 Ensaio: Avaliação e Políticas Públicas em Educação

Licença Creative Commons
Este obra está licenciado com uma Licença Creative Commons Atribuição-NãoComercial 4.0 Internacional.

Apoio:




Programa de Apoio às Publicacoes Cientificas (AED) do Ministério da Ciência, Tecnologia e Inovação (MCTI), Conselho Nacional de Desenvolvimento Cientifico e tecnologico (CNPq), Ministerio da Educação (MEC), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes) e Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro - FAPERJ.
 

SCImago Journal & Country Rank